

Ghana Medical City — Power Infrastructure

Eastern Regional University & Medical City Development

Akyem Apedwa, Eastern Region, Ghana

Technical White Paper — Draft for Review

Summary

The hospital power system saves \$3–5 million in infrastructure cost and reduces annual fuel and maintenance expense by 40–50% compared to conventional Western design. These savings derive from climate-appropriate design rather than cost-cutting.

The same methodology applies across the full 550-acre (223-hectare) campus:

Component	Building Area	Traditional Power	Climate-Adapted Power
Teaching Hospital	300,000 SF (27,870 m ²)	5–6 MW	3–4 MW
University Campus	707,000 SF (65,680 m ²)	8–12 MW	4–6 MW
Institutional Housing	1,170,000 SF (108,700 m ²)	12–18 MW	5–8 MW
General Housing	365,000 SF (33,910 m ²)	4–6 MW	2–3 MW
Entertainment District	300,000 SF (27,870 m ²)	4–6 MW	2–3 MW
Stadium (25,000 seats)	250,000 SF (23,225 m ²)	3–5 MW	2–3 MW
Total Campus	~3.6M SF (~334,000 m²)	36–53 MW	18–27 MW

Campus-wide infrastructure savings: \$15–25 million capital cost, 40–50% annual operating reduction.

The reduction is not achieved by accepting discomfort. The opposite is true.

Thermal Comfort: Why Western Standards Don't Apply

Western building standards assume occupants require air conditioning at 72°F (22°C). This assumption does not transfer to tropical populations.

Ghana's residential air conditioning penetration is 0.7%. Patients, students, and workers come from homes without mechanical cooling. They are physiologically and culturally acclimatized to tropical temperatures.

Research on thermal comfort in tropical hospital wards:

Location	Study Population	Comfort Range	Source
Nigeria (naturally ventilated wards)	Patients	79–86°F (26–30°C)	Aja & Ibem, 2023
Bangladesh (non-AC wards)	Patients	82–90°F (28–32°C)	de Dear & Brager, 2002
Malaysia	Hospital patients	75–84°F (24–29°C)	Yau & Chew, 2009
Madagascar	Hospital patients	76–79°F (24–26°C)	Nematchoua et al., 2017

A patient acclimatized to 86°F (30°C) at home may find a 72°F (22°C) air-conditioned room uncomfortable—even distressing. Research on tropical thermal comfort concludes that air conditioning "may in many cases cause discomfort for tropical people who are not culturally conditioned to the technology" (Agbemabiese et al., 1996).

Where Mechanical Cooling Is Required

Operating theatres, ICU, NICU, recovery rooms, imaging suites, laboratories, pharmacy, and sterile processing require mechanical cooling for clinical and equipment reasons—approximately 30% of hospital floor area.

Where Natural Ventilation Is Appropriate

General patient wards, outpatient clinics, administrative areas, corridors, and public spaces—approximately 70% of floor area—function effectively with cross-ventilation, ceiling fans, and climate-responsive architecture (brise-soleil, courtyards, thermal mass walls).

Ceiling fans at 30–75 watts create air movement that feels 4–5°F (2–3°C) cooler. Compare to 1,000–3,000 watts for an air conditioning unit serving the same space.

The Design Approach

Ghana Medical City follows precedents established by Aga Khan Health Services facilities across East Africa and climate-responsive hospital design documented in WHO and UK National Health Service guidance. The methodology:

1. Climate-responsive architecture (passive cooling, shading, thermal mass)
2. Natural ventilation where clinically appropriate
3. Mechanical cooling only where medically required
4. 24V DC LED lighting throughout (zero transfer time on battery backup)
5. Modern equipment specifications (no legacy high-draw devices)

6. Power conditioning to protect equipment from grid quality issues

This paper documents the technical requirements for the 300-bed teaching hospital. The same principles scale across the full campus development.

The Problem

A surgeon cannot complete an operation in the dark. A ventilator cannot function without electricity. Blood refrigeration fails within hours of power loss.

A 2018 study of Ghanaian healthcare facilities found that in-facility mortality increased by 43% for each day power was out for more than two hours (Apenteng et al., 2018). Documented outcome data from Ghana's health system.

Sub-Saharan Africa faces acute healthcare electrification challenges. WHO data indicates that only 28–34% of healthcare facilities in the region have reliable electricity access. Even among hospitals—the highest tier of care—only 34% report reliable power (Adair-Rohani et al., 2013). A systematic review of 11 sub-Saharan African countries found that 26% of health facilities had no electricity access at all (Adair-Rohani et al., 2013).

Ghana's national grid has improved but still experiences outages. The Eastern Region receives power transmitted from generation facilities elsewhere in the country. A 300-bed tertiary teaching hospital requires power systems that maintain life-safety functions independent of upstream grid conditions.

Ghana Grid Context

Metric	Value (November 2024)
National installed capacity	5,260 MW
Dependable capacity	4,856 MW
Generation mix	Thermal 66%, Hydro 33%, Renewables <1%
Urban availability	Approaches 24 hours/day in most areas
Primary thermal fuel	Natural gas

The sector faces structural challenges. Payment arrears to independent power producers exceed \$3 billion. Gas supply constraints affect thermal plant dispatch. President Mahama's 2025 State of the Nation described power reliability as "an existential threat to Ghana's economy."

Urban areas generally have good availability. Rural and peri-urban areas experience more frequent interruptions. The Eastern Region lacks dedicated large-scale generation—power arrives via transmission from Greater Accra and the Volta system.

Hospital Load Requirements

300-Bed Teaching Hospital — Revised Estimates

Traditional hospital load calculations assume full mechanical cooling throughout and AC-powered lighting. Ghana Medical City's design reduces both significantly.

HVAC Load Reduction

Area	Traditional Approach	Ghana Medical City	Savings
Operating theatres (6)	Mechanical cooling	Mechanical cooling	—
Recovery, ICU, NICU	Mechanical cooling	Mechanical cooling	—
Imaging, lab, pharmacy	Mechanical cooling	Mechanical cooling	—
Patient wards (270 beds)	Mechanical cooling	Natural ventilation + fans	80–90%
Outpatient clinics	Mechanical cooling	Natural ventilation + fans	80–90%
Administrative	Mechanical cooling	Natural ventilation + fans	80–90%
Corridors, lobbies	Mechanical cooling	Open-air/natural ventilation	90–100%

Mechanically cooled area: ~30% of floor space (critical clinical areas only)

Naturally ventilated area: ~70% of floor space

Lighting Load Reduction

Factor	Traditional	24V DC LED	Reduction
Fixture efficiency	AC LED with driver losses	DC direct, no driver	10–15%
Occupancy/daylight sensors	Optional	Standard throughout	20–40%
Conversion losses	5–15% per fixture	Zero	5–15%

Revised Load Summary

System Category	Traditional Hospital	Ghana Medical City	Reduction
HVAC	1,200–2,000 kW	300–500 kW	60–75%
Lighting	200–400 kW	100–200 kW	50%
Medical equipment	800–1,200 kW	600–900 kW	20–25%
Support systems	400–600 kW	350–500 kW	10–15%
Total continuous	2,600–4,200 kW	1,350–2,100 kW	~50%
Peak load	4,300–5,500 kW	2,200–3,200 kW	~45%

Medical equipment reduction assumes modern LED-based surgical lights, efficient imaging equipment, and avoidance of legacy high-draw devices.

Critical Areas—Zero Tolerance for Interruption

Area	Load	Interruption Tolerance
Operating theatres (6 suites)	200–400 kW	Zero—patient on table
Intensive Care Unit (30 beds)	100–200 kW	Zero—life support active
Neonatal ICU	40–80 kW	Zero—incubators, ventilators
Emergency/Trauma	80–150 kW	Zero—resuscitation equipment
Medical imaging (CT, MRI)	150–250 kW	Procedure completion required
Blood bank refrigeration	20–50 kW	4-hour maximum before spoilage
Pharmacy refrigeration	10–30 kW	Temperature-sensitive medications
Laboratory	40–80 kW	Sample integrity

An ICU bed with ventilator, patient monitor, infusion pumps, and feeding pump consumes 160–240 watts continuously. Thirty beds require 5–7 kW for bedside equipment alone, plus HVAC for that unit.

The Four-Layer Architecture

Hospital power requires redundancy. No single system provides adequate reliability. The architecture layers four independent systems:

Layer	System	Response Time	Duration	Purpose
1	Grid connection	N/A	Unlimited	Primary power
2	Diesel generators	8–10 seconds	96+ hours	Emergency backup
3	Battery/UPS	Instantaneous	15–60 minutes	Bridge during transfer
4	Solar PV	N/A	Daylight hours	Cost reduction, grid support

Africa-Specific Considerations: N+1 vs N+2 Redundancy

Standard hospital design in developed countries assumes N+1 generator redundancy: if peak load requires 3 MW, install capacity for 4.5 MW (three 1.5 MW units) so one can fail or undergo maintenance without affecting operations.

In unreliable grid environments, N+2 redundancy warrants consideration. The rationale:

- **Higher generator utilization:** Where grid outages are frequent (daily or weekly rather than annual), generators accumulate run hours faster, increasing maintenance requirements and failure probability.
- **Extended outage durations:** If grid restoration takes days rather than hours, generator uptime becomes critical. Multiple redundant units allow rotation for maintenance during extended events.
- **Fuel supply constraints:** Extended outages may coincide with fuel supply disruptions. More units at partial load consume less fuel per kW than fewer units at full load.
- **Parts availability:** Replacement parts for generators may take weeks to arrive. Additional redundancy allows continued operation during repair.

A hybrid solar-diesel-battery system addresses some of these concerns. Research from Uganda's CoRSU Rehabilitation Hospital demonstrates that a well-designed hybrid system can meet approximately 60% of hospital energy needs from solar, reducing diesel consumption and generator wear (GIZ Green People's Energy, 2023). Nigeria's Bayero University Kano operates Africa's largest off-grid hybrid system: 3.5 MWp solar, 8.1 MWh battery storage, and 2.4 MW backup generators (METKA/REA, 2019).

For Ghana Medical City, the recommended configuration:

Configuration	Generators	Solar PV	Battery	Rationale
N+1 (standard)	3 × 1.5 MW	1–1.5 MWp	2 MWh	Adequate if grid is reasonably reliable
N+2 (enhanced)	4 × 1.2 MW	1.5–2 MWp	3 MWh	Appropriate for unreliable grid, remote location

The choice depends on actual grid reliability data for the Eastern Region and tolerance for risk. JCI accreditation—increasingly sought by tertiary hospitals in Africa—requires demonstrated emergency power capability but does not prescribe specific redundancy levels beyond NFPA compliance.

The Critical Gap

When grid power fails, diesel generators require 8–10 seconds to start and synchronize. During those seconds:

- Ventilators stop
- Surgical lights go dark
- Patient monitors lose data
- Infusion pumps halt
- Defibrillators become unavailable

For a patient on an operating table with an open chest cavity, 10 seconds without light is unacceptable. For a patient on mechanical ventilation, 10 seconds without airflow causes oxygen desaturation.

The battery/UPS layer bridges this gap with instantaneous switchover.

Power Quality: Beyond Outages

Power reliability (keeping the lights on) is necessary but not sufficient. Power *quality*—stable voltage, clean waveform, consistent frequency—determines whether medical equipment functions correctly, lasts its expected lifespan, and produces accurate results.

Ghana Grid Quality Data

Research from the University of Pennsylvania and nLine Inc. deployed over 1,000 voltage monitoring sensors across Accra between 2017–2023, producing the most detailed power quality data available for Ghana (Berkouwer et al., 2024).

Key findings:

Metric	Value
Average voltage experienced	219V (nominal is 230V)
Time with voltage >10% below nominal	17% of hours (115 hours/month)
Time with voltage >20% below nominal	5% of hours
Monthly events below 200V (>2 min each)	43 events
Worst voltage hours	7:00 PM – 10:00 PM (peak demand)
Households with appliances damaged by voltage in past year	26%
Average repair/replacement cost per damaged appliance	\$39 USD

For comparison: in the United States, the largest fraction of recordings outside $\pm 10\%$ of nominal voltage in any month is only 0.1% (Pecan Street, 2018).

Ghana's Public Utilities Regulatory Commission mandates voltage within $\pm 10\%$ of nominal. The data show this standard is routinely violated, particularly during evening peak hours when many households experience voltage more than 20% below nominal.

Why Power Quality Matters for Medical Equipment

Medical devices are designed for specific voltage and frequency ranges. Deviation causes:

Power Quality Issue	Effect on Medical Equipment
Undervoltage (sag)	Motors run slow, reduced torque, overheating, premature failure
Oversupply (swell)	Insulation breakdown, component stress, immediate damage
Harmonics	Heating in transformers and motors, interference with sensitive electronics, false readings
Frequency deviation	Timing errors in monitors, synchronization failures, motor speed variation
Transients/spikes	Component damage, data corruption, sudden failures

The 70% medical device failure rate in least-developed countries is not primarily due to poor equipment—it's poor power quality degrading otherwise functional devices (WHO, 2010; Malkin, 2007).

Equipment Sensitivity Classes

Class	Equipment	Voltage Tolerance	Frequency Tolerance
Critical	MRI, CT scanner, patient monitors	±5%	±0.5 Hz
Sensitive	Ultrasound, infusion pumps, ventilators	±10%	±1 Hz
Standard	General lighting, HVAC motors	±15%	±2 Hz

At 219V average (Ghana measured), critical equipment operates 5% below nominal continuously—at the edge of tolerance. During evening peaks with 20%+ drops, equipment operates far outside design parameters.

Power Conditioning Architecture

To achieve 0% equipment failure from power quality, the hospital requires layered protection:

Layer 1: Utility Interface

Equipment	Function	Location
Surge protective devices (SPD)	Clamp lightning/switching transients	Main switchgear, distribution panels
Power quality monitor	Continuous logging of V, Hz, THD, PF	Utility metering point

Layer 2: Building Distribution

Equipment	Function	Location
Automatic voltage regulators (AVR)	Stabilize voltage ±1–3%	Each distribution transformer secondary
Harmonic filters	Remove 3rd, 5th, 7th harmonics	Main distribution boards
Power factor correction	Maintain PF >0.95, reduce losses	Central plant, large motor loads

Layer 3: Critical Area Protection

Equipment	Function	Location
Online double-conversion UPS	Regenerate pure sine wave, isolate from all grid disturbances	Operating theatres, ICU, imaging
Isolation transformers	Galvanic isolation, common-mode noise rejection	Each operating theatre (required for IPS)
Medical-grade power strips	Additional filtering, ground fault protection	Point of use

Layer 4: Equipment-Level Protection

Equipment	Function	Application
Individual equipment UPS	Additional backup for most critical devices	MRI cryo, life support
Voltage stabilizers	Point-of-use regulation	Sensitive lab equipment
Surge strips	Last line of defense	Computer workstations

Online Double-Conversion UPS: The Core Technology

The online double-conversion UPS is the key to power quality for critical medical areas. How it works:

1. **Rectifier** converts incoming AC to DC, charging batteries
2. **Inverter** converts DC back to AC, generating a new, clean sine wave
3. **Load** always runs from inverter—never directly from grid
4. **Result:** Equipment sees perfect power regardless of input quality

Parameter	Grid Input (Ghana typical)	UPS Output
Voltage	190–250V (fluctuating)	230V $\pm 1\%$
Frequency	49.5–50.5 Hz	50 Hz $\pm 0.1\%$
Waveform	Distorted (5–15% THD)	Pure sine wave (<3% THD)
Response to outage	Immediate loss	Zero transfer time

The equipment never knows the grid is unreliable. The UPS presents consistent, clean power regardless of what happens upstream.

Generator Power Quality

Diesel generators also produce power quality issues:

Issue	Cause	Mitigation
Voltage transients	Load steps, governor hunting	Fast-response electronic governors
Frequency variation	Load changes, engine speed	Isochronous governors, multiple paralleled units
Harmonics	Non-linear loads, generator design	Oversized alternators, harmonic filters
Voltage sag on transfer	Initial load inrush	Soft-start controls, staged transfer

Generator specifications for hospital use:

Parameter	Specification
Voltage regulation	±1% steady state, ±5% transient
Frequency regulation	±0.25% steady state (isochronous)
Transient response	<5% voltage deviation, recover in <3 seconds
Harmonic distortion	<5% THD
Generator type	Brushless, 2/3 pitch winding (for harmonic reduction)

Cost of Power Quality Systems

System	Capacity	Estimated Cost
Main switchgear SPDs	11 kV and 415V	\$50,000–100,000
AVRs (distribution level)	4–6 units, 500 kVA each	\$150,000–250,000
Harmonic filters	500 kVA total	\$100,000–150,000
Power factor correction	1,000 kVAR	\$80,000–120,000
Power quality monitoring	Building-wide	\$50,000–100,000

System	Capacity	Estimated Cost
Total power quality infrastructure		\$430,000–720,000

Additional to UPS systems in main estimate. These systems condition power to manufacturer specifications regardless of grid conditions.

Dedicated Substation

The hospital requires a dedicated high-voltage connection rather than distribution-level service. A 33/11 kV substation isolates the facility from downstream distribution problems.

Component	Specification
Incoming voltage	33 kV (or 161 kV if transmission line nearby)
Substation capacity	10–15 MVA (hospital) / 20 MVA (full district)
Transformation	33/11 kV primary, 11 kV/415V distribution
Redundancy	Dual incoming feeders where available
Metering	Revenue-grade with power quality monitoring

Internal Distribution

System	Description
Main switchgear	11 kV ring main unit
Distribution transformers	Multiple 11 kV/415V units serving building zones
Essential electrical system	Segregated distribution for life-safety loads
Normal distribution	General loads (non-critical)

The essential electrical system feeds only critical loads. When generators start, they power essential systems first. Non-critical loads (general lighting, non-emergency HVAC, kitchen equipment) may remain off during extended outages to conserve generator capacity.

Layer 2: Diesel Generator Plant

Regulatory Requirements

International standards (NFPA 110, NFPA 99, JCI accreditation) establish minimum requirements:

Requirement	Standard
Startup time	≤ 10 seconds from grid failure to generator power
Fuel storage	96 hours minimum at full load
Testing	Monthly load testing, annual full-load test
Redundancy	N+1 configuration (any single unit can fail)
Transfer	Automatic transfer switches, minimum 3 for essential system

Generator Configuration

Option	Configuration	Total Capacity	Redundancy
A	3 \times 2,000 kW	6,000 kW	N+1 (4,000 kW available if one fails)
B	4 \times 1,500 kW	6,000 kW	N+1 (4,500 kW available if one fails)
C	2 \times 2,500 kW + 1 \times 1,500 kW	6,500 kW	Partial redundancy

Option A or B provides true N+1 redundancy. Hospital peak load of 4,300–5,500 kW remains covered even with one generator offline for maintenance or failure.

Essential Electrical System Branches

NFPA 99 requires the essential electrical system to have three branches, each with its own automatic transfer switch:

Branch	Loads	Transfer Priority
Life Safety	Exit signs, egress lighting, fire alarm, fire pump	First (immediate)
Critical	Operating rooms, ICU, emergency department, medical gas	First (immediate)
Equipment	HVAC for critical areas, elevators, kitchen, general medical equipment	Second (delayed)

The life safety and critical branches transfer immediately when generator power is available. The equipment branch may delay transfer to allow generators to stabilize under load.

Fuel System

Parameter	Calculation
Generator consumption	~200–250 liters/hour per 1,000 kW at 75% load
Three generators at 75% load	~1,200–1,500 liters/hour
96-hour requirement	~115,000–145,000 liters
Tank capacity (with margin)	150,000 liters minimum
Tank configuration	Multiple tanks for redundancy, bunded containment

Fuel quality degrades over time. Diesel stored beyond 6–12 months requires treatment or replacement. The fuel management plan includes:

- Regular fuel testing
- Fuel polishing system
- Rotation schedule
- Multiple supplier agreements for emergency resupply

Generator Building

Requirement	Specification
Location	Separate structure or dedicated wing, away from patient areas
Ventilation	Combustion air intake, exhaust discharge, radiator cooling
Sound attenuation	Acoustic enclosures, <75 dB at property boundary
Fire suppression	Automatic suppression system rated for diesel equipment
Spill containment	Bunded floor, fuel interceptor
Access	24-hour access for maintenance, fuel delivery

Layer 3: Uninterruptible Power Supply (UPS)

The 10-Second Problem

Generators start within 10 seconds. Modern automatic transfer switches operate in 100–500 milliseconds. But the generator requires those seconds to:

1. Receive start signal from transfer switch
2. Crank and ignite
3. Accelerate to rated speed
4. Stabilize voltage and frequency
5. Close onto load

During this interval, critical equipment loses power unless a UPS bridges the gap.

UPS Architecture for Critical Areas

Area	UPS Capacity	Runtime	Configuration
Operating theatres	200–300 kVA	15–30 minutes	Centralized, N+1
ICU/NICU	100–150 kVA	15–30 minutes	Centralized or distributed
Emergency/Trauma	75–100 kVA	15–30 minutes	Centralized
Medical imaging	100–150 kVA	10–15 minutes	Per-equipment or centralized
Laboratory	50–75 kVA	15–30 minutes	Centralized
Data/communications	30–50 kVA	30–60 minutes	Dedicated
Total critical UPS	550–825 kVA	—	—

UPS Technology Selection

Technology	Efficiency	Response	Maintenance	Application
Double-conversion online	92–96%	Zero transfer time	Battery replacement every 3–5 years	Critical medical loads
Line-interactive	95–98%	2–4 ms transfer	Lower maintenance	Non-critical backup
Rotary UPS	95–97%	Zero transfer time	Mechanical maintenance	Large centralized systems

Double-conversion online UPS is standard for hospital critical loads. The load continuously runs from the inverter; battery is always in circuit. Grid or generator failure causes zero interruption—the battery simply continues supplying the inverter.

Battery Technology

Type	Energy Density	Cycle Life	Maintenance	Cost
Valve-regulated lead-acid (VRLA)	Lower	3–5 years	Low	Lower
Lithium iron phosphate (LFP)	Higher	10–15 years	Very low	Higher initial
Nickel-cadmium	Moderate	15–20 years	Moderate	Higher

VRLA remains common for hospital UPS due to lower initial cost and proven reliability. LFP offers longer life and smaller footprint but higher capital cost. The choice depends on lifecycle cost analysis and space constraints.

Critical Point: UPS Runtime Is Not the Goal

UPS batteries provide 15–30 minutes of runtime—not to power through an outage, but to:

1. Bridge the 10-second gap until generators start
2. Provide time for safe shutdown if generators fail to start
3. Allow orderly transfer of patients if all backup fails

If generators fail to start within 60 seconds, something is seriously wrong. The UPS buys time to diagnose and respond—not to operate indefinitely.

Equipment Failure from Poor Power Quality

An estimated 70% of medical devices in least-developed countries regularly fail or are unavailable, with poor

power quality being a major contributing factor (WHO, 2010; Perry & Malkin, 2011). Beyond outages, voltage sags, frequency variations, and harmonics damage sensitive equipment:

Equipment	Sensitivity	Consequence of Poor Power
CT scanner	High	X-ray tube damage (\$50,000–150,000 replacement)
MRI	Very high	Magnet quench, helium boil-off
Ultrasound	Moderate	Calibration drift, shortened lifespan
Infusion pumps	Moderate	Dosing errors, alarm failures
Ventilators	High	Motor damage, sensor failures

UPS systems with power conditioning (voltage regulation, harmonic filtering) protect equipment from both outages and power quality degradation. This reduces maintenance costs and extends equipment life—particularly important where replacement parts may take weeks to arrive.

Layer 4: Solar PV Array

Solar generation reduces grid dependence during daylight hours and lowers operating costs. It does not replace emergency backup systems.

Sizing Rationale

Parameter	Value
Hospital base load	2,000–3,200 kW
Peak sun hours (Ghana)	5–6 hours/day
Target daytime offset	30–50% of base load
Array capacity	1,000–2,000 kWp
Annual generation	1,500–3,000 MWh

Configuration

Component	Specification
Modules	Monocrystalline, 500–600 Wp per panel
Mounting	Ground-mount (primary) + rooftop (supplemental)
Inverters	String inverters with grid-forming capability
Land requirement	2–4 acres for ground-mount portion
Grid interconnection	Synchronous with hospital distribution

Solar Does Not Replace Generators

Solar output varies with cloud cover, time of day, and season. A cloud passing during surgery cannot be tolerated. The solar system:

- Reduces grid consumption and cost
- Provides supplemental power during daylight
- Does not provide emergency backup
- Does not eliminate need for diesel generators or UPS

Operating Theatre Power Design

The operating theatre suite requires the highest level of power reliability. A patient under anesthesia with an open surgical field cannot tolerate any interruption.

Per-Theatre Load

Equipment	Load
Surgical lights (LED)	500–1,500 W
Electrosurgical unit	400–800 W
Anesthesia machine	200–400 W
Patient monitor	100–200 W
Infusion pumps (multiple)	50–150 W
Suction	200–400 W
Surgical table	100–300 W
Image intensifier (when used)	2,000–5,000 W
HVAC (dedicated air handling)	5,000–15,000 W
Lighting (general room)	500–1,000 W
Total per theatre	10–25 kW typical

Six operating theatres: 60–150 kW total, plus corridor and support areas.

Power Distribution in Theatre Suite

System	Feed
Surgical lights	Dedicated circuit from critical branch UPS
Patient monitoring	Dedicated circuit from critical branch UPS
Anesthesia equipment	Dedicated circuit from critical branch UPS
Electrosurgical unit	Dedicated circuit from critical branch
General outlets	Essential electrical system
HVAC	Equipment branch

Each operating theatre has its own distribution panel fed from the critical branch. Outlets are color-coded:

Color	Source	Use
Red	Emergency power (critical branch)	Life-critical equipment
White	Normal power	General equipment
Blue (optional)	UPS-backed	Equipment requiring zero-interruption

Isolated Power Systems

Operating theatres use isolated power systems (IPS) to prevent electrical shock and maintain power during ground faults.

Component	Function
Isolation transformer	Separates theatre circuits from main distribution
Line isolation monitor	Continuously monitors for ground faults
Alarm panel	Alerts staff to fault conditions without tripping power

A ground fault in a normal system trips the breaker—power is lost. In an isolated power system, a single ground fault triggers an alarm but power continues. Surgery completes; the fault is investigated afterward.

Intensive Care Unit Power Design

Per-Bed Load

Equipment	Load
Ventilator	100–200 W
Patient monitor (with modules)	50–150 W
Infusion pumps (3–5 per patient)	30–75 W
Feeding pump	20–30 W
Bed (electric)	100–200 W
Suction	100–200 W
Total per bed (equipment)	400–850 W

Thirty ICU beds: 12–25 kW for bedside equipment, plus HVAC, lighting, nursing stations, and support areas. Total ICU load: 100–200 kW.

Power Architecture

System	Configuration
Bedside power	Headwall or ceiling-mounted outlets, minimum 8 per bed
UPS protection	Centralized UPS serving ICU distribution
Emergency power	100% of ICU on essential electrical system
Normal power backup	Patient entertainment, non-critical lighting

All ventilators and patient monitors connect to UPS-backed circuits. Even momentary power loss can reset equipment or lose stored settings.

Emergency Department / Trauma

The emergency department receives patients at all hours in unpredictable condition. Power interruption during resuscitation is not survivable.

Critical Areas

Area	Load	Power Source
Resuscitation bays	5–10 kW each	UPS + essential electrical
Trauma bays	10–20 kW each	UPS + essential electrical
Triage	2–5 kW	Essential electrical
Observation	1–2 kW per bed	Essential electrical
Imaging (X-ray, CT)	50–100 kW	Essential electrical

Resuscitation Equipment

Equipment	Power Requirement
Defibrillator	Battery-powered, charger on UPS circuit
Cardiac monitor	UPS circuit
Ventilator	UPS circuit
Infusion pumps	UPS circuit
Suction	Essential electrical
Surgical lights	Essential electrical

Defibrillators are battery-powered but require charged batteries. Charging station on UPS circuit.

Medical Imaging

CT Scanner

Parameter	Value
Operating power	80–120 kW during scan
Standby power	5–15 kW
Startup sequence	10–20 minutes after power restoration
Power quality	Sensitive to voltage sag, harmonics

CT scanners require clean, stable power. A voltage sag during a scan can damage the X-ray tube (replacement cost: \$50,000–150,000). Dedicated voltage regulation and power conditioning are standard.

MRI Scanner

Parameter	Value
Magnet cooling	10–30 kW continuous (superconducting systems)
Scan operation	30–50 kW additional
Quench risk	Loss of cooling can cause helium boil-off
Power quality	Extremely sensitive

MRI magnets must remain energized continuously. Power loss causes the cryogenic system to fail; the magnet can quench (rapid helium boil-off), requiring expensive refill and potentially damaging the magnet. MRI rooms typically have dedicated UPS with extended runtime.

System Integration and Control

Building Management System (BMS)

Function	Description
Generator monitoring	Fuel level, run hours, fault status
UPS monitoring	Battery status, load, remaining runtime
Transfer switch status	Position, fault indication
Power quality	Voltage, frequency, harmonics
Load shedding	Automatic and manual control
Alarm management	Centralized annunciation, remote notification

Automatic Load Shedding

When generators are at capacity and additional load is required, non-critical loads shed automatically:

Priority	Loads	Shed Order
1 (Never shed)	Operating theatres, ICU, emergency	—
2 (Shed last)	Laboratory, pharmacy, blood bank	4th
3	General patient wards	3rd
4	Administration, cafeteria	2nd
5	Non-essential HVAC, lighting	1st

Maintenance Access

Generator and electrical systems require regular maintenance. The design must allow maintenance without compromising patient safety:

- Generators can be taken offline one at a time while others remain operational
- UPS bypass allows battery maintenance without losing protection
- Transfer switches have maintenance bypass
- All critical systems have test capability without interrupting patient care

Summary: What Keeps Surgery Running

When the grid fails during an operation:

Time	Event
0 ms	Grid power lost
0 ms	UPS batteries instantaneously take load—zero interruption in operating theatre
100–500 ms	Automatic transfer switch senses loss, sends start signal to generators
1–3 seconds	Generators crank and start
5–8 seconds	Generators reach rated speed and voltage
8–10 seconds	Transfer switch closes onto generator power
10+ seconds	UPS returns to bypass mode, batteries begin recharging

The surgeon never knows the grid failed. The lights stay on. The monitors continue. The ventilator breathes. The patient lives.

What Must Be True

Requirement	System
Zero interruption to life-critical equipment	UPS with instantaneous transfer
Generator start within 10 seconds	Properly maintained diesel plant
96 hours of autonomous operation	Fuel storage and supply agreements
N+1 redundancy	Multiple generators, any one can fail
Isolated ground fault protection	Isolated power systems in theatres
Continuous monitoring	BMS with alarm and notification

Demand Reduction: Climate-Responsive Architecture

Power infrastructure sizing and operating costs depend directly on peak load. Ghana Medical City's

architectural approach—brise-soleil, jali screens, courtyards, cross-ventilation—reduces HVAC demand by 40–50% compared to glass curtain wall construction.

Passive Design Elements

Element	Function	Load Reduction
Brise-soleil	Exterior sun shading screens block direct solar gain while allowing daylight and airflow	20–30% cooling load reduction
Jali screens	Perforated masonry screens filter light, promote ventilation, provide privacy	Reduces solar heat gain, enables natural ventilation
Courtyards	Internal open spaces create stack effect, draw cool air through building	Natural ventilation reduces mechanical cooling requirement
Deep overhangs	Roof and floor plate extensions shade walls from direct sun	Wall surface temperatures reduced 10–15°C
Masonry construction	Thermal mass moderates temperature swings	R-50 vs R-4.3 for glass curtain wall
Cross-ventilation	Building orientation and openings enable breeze-through	Reduces or eliminates mechanical cooling in non-clinical areas

Research from Kwame Nkrumah University of Science and Technology documents 48–50% energy reduction with passive strategies in Ghana's climate zones. JCI-accredited facilities in East Africa demonstrate that ceramic brise-soleil, open-air verandas, and courtyard microclimates maintain comfort in tropical climates without glass box construction.

Mechanical Cooling: Where Required, Where Not

Ghana Context

Only 0.7% of Ghanaian households have air conditioning (Twerefou and Abeney, 2020). Patients admitted to the hospital come from homes without mechanical cooling. They are acclimatized to tropical temperatures.

Thermal Comfort Research in Tropical Hospitals

Studies of naturally ventilated hospital wards in tropical climates show patient comfort at temperatures that would be considered warm by Western standards:

Location	Patient Comfort Range	Source
Nigeria (naturally ventilated wards)	26.2°C – 29.9°C neutral	Aja & Ibem, 2023
Bangladesh (non-AC wards)	28.2°C – 31.8°C acceptable	de Dear & Brager, 2002
Thailand	21.8°C – 27.9°C acceptable	Sattayakorn et al., 2017
Malaysia	23.8°C – 29°C acceptable	Yau & Chew, 2009
Madagascar	24.5°C – 26.2°C (90% comfortable)	Nematchoua et al., 2017

Research on tropical cooling based on empirical studies in Ghana and Thailand notes: "air conditioners are often not necessary and may in many cases cause discomfort for tropical people who are not culturally conditioned to the technology" (Agbemabiese et al., 1996).

Patients acclimatized to 28–30°C at home may find a 22°C air-conditioned room uncomfortable—even distressing. The thermal shock of moving between outdoor heat and aggressive air conditioning can be physiologically stressful.

Where Mechanical Cooling Is Required

Area	Requirement	Rationale
Operating theatres	20–24°C, humidity controlled	Surgical team in sterile gowns, patient exposed; infection control
Recovery rooms	22–26°C	Post-anesthesia patients cannot thermoregulate normally
ICU/NICU	22–26°C, controlled humidity	Critically ill patients; precise environmental control
Imaging (MRI, CT)	Equipment specifications	MRI requires 18–22°C for magnet cooling
Laboratory	20–25°C	Sample integrity, equipment calibration
Pharmacy/Blood bank	Temperature-controlled storage	Medication and blood product stability
Sterile processing	Controlled environment	Infection control requirements

Where Natural Ventilation Is Appropriate

Area	Approach	Notes
General patient wards	Cross-ventilation, ceiling fans	Patients acclimatized to tropical temperatures
Outpatient clinics	Natural ventilation with fans	Short visits; patients dressed normally
Administrative offices	Natural ventilation, fans	Staff can dress appropriately
Corridors, lobbies	Open-air or naturally ventilated	Transition spaces
Cafeteria, public areas	Natural ventilation	High occupancy benefits from air movement

The UK's Health Technical Memorandum 03-01 states that "the default method of ventilation should as far as possible be natural ventilation" for healthcare premises (NHS England, 2021). WHO guidelines for infection control recommend natural ventilation for airborne disease control—open windows provide 28+ air changes per hour, exceeding mechanical system capabilities (WHO, 2009).

Ceiling Fans

Air movement increases perceived comfort without reducing temperature. At 0.9 m/s air velocity, occupants perceive conditions as 2–3°C cooler. Ceiling fans consume 30–75 watts each versus 1,000–3,000 watts for a room air conditioner.

Cooling Method	Power per Room	Perceived Cooling
Ceiling fan	30–75 W	2–3°C equivalent
Split AC unit	1,000–3,000 W	Actual temperature reduction
Ratio	20–40x difference	—

Impact on Power System Sizing

Design Approach	HVAC Load	Total Hospital Load	Generator Requirement
Glass curtain wall	1,500–2,000 kW	3,500–5,500 kW	6–8 MW installed
Climate-responsive + natural ventilation	300–500 kW	1,350–2,100 kW	4–5 MW installed
Savings	70–75%	50–60%	35–45%

Reduced peak demand translates to smaller generators, smaller UPS systems, smaller solar arrays, lower fuel consumption. Operating cost savings compound annually.

Load Shedding Strategy

When generator capacity is constrained—due to equipment failure, fuel shortage, or extended outage—the hospital sheds non-critical loads to preserve life-safety functions. NFPA 110 requires: "Upon failure of one or more engine generator sets, the load is automatically reduced (shed), starting with the load of least priority so that the last load affected is the highest priority or emergency load."

Priority Tiers

Priority	Category	Loads	Action
P1	Life safety	Operating theatres, ICU, NICU, emergency department, life support equipment	Never shed
P2	Critical support	Laboratory, pharmacy, blood bank, medical imaging (active procedures), sterilization	Shed only if P3 exhausted
P3	General care	Patient wards (general lighting, outlets), general HVAC	Shed before P2
P4	Administrative	Offices, conference rooms, non-essential computing	Shed before P3
P5	Deferrable	Cafeteria, laundry, external lighting, non-essential HVAC zones	Shed first

Research on healthcare facility microgrids shows P1 (critical) loads typically represent 40–45% of total hospital load, P2 approximately 10%, and P3 (non-critical) approximately 45–50% (Poudel et al., 2025). Shedding P5 and P4 loads reduces demand by 25–30% with minimal impact on patient care.

Automatic Load Shedding Sequence

Trigger	Action
Generator load >85% for 30 seconds	Shed P5 loads
Generator load >90% for 30 seconds	Shed P4 loads
Generator load >95% for 30 seconds	Shed P3 loads
Generator failure (N-1 condition)	Immediate shed of P4 and P5
Multiple generator failure	Shed P3, alert clinical staff for manual P2 decisions

The BMS executes shedding automatically. Clinical staff receive notification but do not need to take action for P3–P5 loads. P2 shedding (if ever required) involves clinical judgment—e.g., deferring elective imaging while maintaining emergency imaging capability.

24V DC LED Lighting

Standard hospital lighting uses 230V AC. Each LED fixture contains an internal AC-to-DC converter. During power transfer (grid to generator, or grid to UPS), these converters can produce flicker or brief interruption.

An alternative: 24V DC lighting circuits fed directly from battery banks throughout the facility.

Precedent: Kaiser Permanente San Marcos

Kaiser Permanente's San Marcos Medical Center in California was designed with low-voltage DC lighting systems using Class 2 wiring on patient care floors—the first approved by California's Department of Health Care Access and Information for this application. The DC system eliminated 5.6 miles of 3/4-inch conduit and 4.5 miles of metal-clad cables, saving approximately 3,500 hours of installation labor (Salas O'Brien, 2023).

Advantages of 24V DC

Factor	24V DC	230V AC
Transfer time	Zero (batteries always in circuit)	0–10 ms (UPS) or 8–10 sec (generator)
Fire risk	Lower—24V is Safety Extra Low Voltage (SELV), reduced arc flash hazard	Higher—requires arc fault protection
Conversion losses	None (DC direct to LED)	5–15% loss in AC-DC conversion per fixture
Solar integration	Direct from battery bank, no inverter required	Requires inverter
Wiring	Class 2 wiring, no conduit required	Metal-clad cable or conduit required
Installation labor	Significantly reduced	Standard electrical trade
Maintenance	Fewer components to fail	AC-DC driver failure is common LED failure mode

24V qualifies as Safety Extra Low Voltage (SELV) under IEC standards. At 24V, human contact does not produce dangerous current flow even in wet conditions. No arc flash hazard.

Patient Room Electrical Loads

What actually requires power in a patient room?

Load	Voltage	Notes
Overhead lighting	24V DC	LED, battery-backed
Reading/task light	24V DC	LED, battery-backed
Night light	24V DC	LED, photocell or manual
Nurse call	Low voltage	Typically 24V DC system
Bed controls	Low voltage or battery	Many beds are manual or battery-powered
TV/display	12–24V DC	Modern displays run on DC internally
Phone/device charging	5V DC (USB)	Direct from DC bus via USB ports
Patient monitor (if needed)	Battery-backed, low power	Portable units with internal battery

Nothing in a typical patient room requires 230V AC. The legacy assumption—wire everything for grid voltage—made sense when devices required AC. Modern LED lighting, electronics, and portable medical devices run on DC internally. Converting AC to DC at every fixture wastes energy and adds failure points.

Hospital-Wide DC Lighting

Area	Notes
Operating theatres	Surgical task lighting on dedicated battery circuit
ICU/NICU	Patient bedside and monitoring visibility
Emergency department	Trauma bay, resuscitation areas
Patient wards	General and reading lights
Corridors	Wayfinding and emergency egress
Administrative	Office and workspace lighting
Exterior	Pathway and security lighting

All LED lighting throughout the facility runs on 24V DC. No inverter, no AC-DC drivers per fixture, continuous illumination during any power transition.

Wiring Considerations

24V DC requires heavier gauge wire for equivalent power delivery. For a 100W lighting load at 15m run:

Voltage	Current	Wire Gauge	Voltage Drop
24V DC	4.2A	4mm ²	<3%

Heavier wire gauge adds material cost. Offset by: Class 2 wiring (no conduit), reduced installation labor, no AC-DC drivers to fail, no inverter losses, direct solar/battery integration, SELV safety classification, zero-interruption operation.

High-power medical equipment (MRI, CT, X-ray, surgical equipment, sterilizers) requires 230V AC with UPS protection. Lighting—the largest fixture category and the load most suited to solar/battery integration—runs entirely on DC.

Integration with Solar PV

Solar panels produce DC. Battery banks store DC. LED fixtures consume DC. A 24V DC lighting circuit connects these directly:

Solar → Charge Controller → 24V Battery Bank → 24V DC Lighting

No inverter. No rectifier. No conversion losses. The lighting system operates independently of AC grid and generator. During extended outage, 24V DC lighting continues as long as batteries have charge or sun is shining.

Aga Khan Health Services facilities use LED and sensor-responsive lighting throughout, combined with passive design strategies—brise-soleil, courtyards, natural ventilation—to minimize total electrical load.

Cost Summary

Revised Power Infrastructure — Ghana Medical City Design

The combination of natural ventilation for non-critical areas, 24V DC LED lighting, and modern equipment reduces peak load from ~5 MW (traditional design) to ~3 MW. This cascades through all infrastructure sizing.

System	Traditional Hospital	Ghana Medical City	Notes
Grid connection/substation	\$3–5M (15 MVA)	\$2–3.5M (8–10 MVA)	Smaller transformer capacity
Generator plant	\$4–6M (6 MW, N+1)	\$2.5–4M (4 MW, N+1)	3 × 1.5 MW vs 3 × 2 MW
UPS systems	\$1.5–2.5M (800 kVA)	\$1–1.5M (500 kVA)	Reduced critical load
Internal distribution	\$2–4M	\$1.5–3M	Smaller conductors, panels
Solar PV array	\$1.5–3M (1–2 MWp)	\$1.5–2.5M (1–1.5 MWp)	Sized to actual load
Controls, BMS, integration	\$0.5–1M	\$0.5–0.8M	Similar complexity

Power Conditioning Systems

Ghana grid quality data shows voltage averaging 5% below nominal, with 43 events per month dropping below 200V. To achieve 0% equipment failure from power quality:

System	Function	Cost
Automatic voltage regulators (AVR)	Stabilize voltage to $\pm 1\text{--}3\%$ at each distribution transformer	\$150–250K
Harmonic filters	Remove 3rd, 5th, 7th harmonics from grid and generator	\$75–125K
Surge protective devices (SPD)	Clamp lightning and switching transients	\$50–75K
Power factor correction	Maintain PF >0.95 , reduce losses	\$75–100K
Power quality monitoring	Continuous logging, alarm on deviation	\$50–75K
Power conditioning subtotal		\$400–625K

Power conditioning is included in UPS for critical areas (double-conversion UPS regenerates clean power). The costs above cover building-wide protection upstream of UPS systems.

24V DC Lighting Infrastructure

Component	Cost	Notes
24V battery banks (distributed)	\$200–350K	LiFePO4, sized for 4-hour backup
Charge controllers	\$50–100K	MPPT solar integration
DC distribution panels	\$75–125K	Class 2 wiring, no conduit
LED fixtures (24V DC)	\$300–500K	Hospital-wide, high CRI
DC lighting subtotal	\$625K–1.1M	Offset by AC wiring savings

Note: 24V DC system eliminates 5+ miles of conduit, metal-clad cable, and AC-DC drivers. Net cost approximately equal to traditional AC lighting with significantly lower operating cost.

Total Power Infrastructure

Category	Cost Range
Grid connection and substation	\$2–3.5M
Generator plant (4 MW, N+1)	\$2.5–4M
UPS systems (500 kVA critical)	\$1–1.5M
Internal distribution	\$1.5–3M
Power conditioning (building-wide)	\$0.4–0.6M
Solar PV (1–1.5 MWp)	\$1.5–2.5M
24V DC lighting system	\$0.6–1.1M
Controls, BMS, integration	\$0.5–0.8M
Total	\$10–17M

Comparison to Traditional Design

Metric	Traditional	Ghana Medical City	Savings
Peak load	4.5–5.5 MW	2.2–3.2 MW	40–45%
Generator capacity	6 MW	4 MW	33%
Infrastructure cost	\$13.5–22M	\$10–17M	20–25%
Annual fuel consumption	Baseline	40–50% less	Proportional to load
Annual maintenance	Baseline	25–35% less	Smaller equipment

The reduced infrastructure cost (~\$3–5M savings) can offset additional construction cost for passive cooling features (thicker walls, courtyards, brise-soleil). Operating cost savings compound annually.

References

Agbemabiese, L., Berko, K., & du Pont, P. (1996). Air conditioning in the tropics: Cool comfort or cultural conditioning? In *Proceedings of the 1996 ACEEE Summer Study on Energy Efficiency in Buildings*. Washington, DC: American Council for an Energy Efficient Economy.

Adair-Rohani, H., Zukor, K., Bonjour, S., Wilburn, S., Kuesel, A.C., Hebert, R., & Fletcher, E.R. (2013). Limited electricity access in health facilities of sub-Saharan Africa: A systematic review of data on electricity access, sources, and reliability. *Global Health: Science and Practice*, 1(2), 249–261. <https://doi.org/10.9745/GHSP-D-13-00037>

Aja, F.N., & Ibem, E.O. (2023). Influence of building attributes on thermal comfort in naturally ventilated hospital wards in the hot-humid tropics of southeast Nigeria. *International Journal of Building Pathology and Adaptation*. <https://doi.org/10.1108/ijbpa-12-2022-0189>

Apenteng, B.A., Opoku, S.T., Ansong, D., Akowuah, E.A., & Afriyie-Gyawu, E. (2018). The effect of power outages on in-facility mortality in healthcare facilities: Evidence from Ghana. *Global Public Health*, 13(5), 545–555. <https://doi.org/10.1080/17441692.2016.1217031>

Berkouwer, S., Biscaye, P., Mikdash, M., Puller, S., & Wolfram, C. (2024). Improving voltage quality through transformer construction in Accra, Ghana. *Kleinman Center for Energy Policy Digest*. University of Pennsylvania. <https://kleinmanenergy.upenn.edu/research/publications/improving-voltage-quality-through-transformer-construction-in-accra-ghana/>

de Dear, R.J., & Brager, G.S. (2002). Thermal comfort in naturally ventilated buildings: Revisions to ASHRAE Standard 55. *Energy and Buildings*, 34(6), 549–561. [https://doi.org/10.1016/S0378-7788\(02\)00005-1](https://doi.org/10.1016/S0378-7788(02)00005-1)

GIZ Green People's Energy for Africa. (2023). Secure energy for health center through solar hybrid system: CoRSU Rehabilitation Hospital, Uganda. <https://gruene-buergerenergie.org/en/projects/secure-energy-for-health-center-through-solar-hybrid-system/>

Howden-Chapman, P., Viggers, H., Chapman, R., O'Sullivan, K., Telfar Barnard, L., & Lloyd, B. (2012). Tackling cold housing and fuel poverty in New Zealand: A review of policies, research, and health impacts. *Energy Policy*, 49, 134–142.

Lan, L., Tushar, W., Otto, K., Yuen, C., & Wood, K. (2017). Thermal comfort improvement of naturally ventilated patient wards in Singapore. *Energy and Buildings*, 154, 499–512. <https://doi.org/10.1016/j.enbuild.2017.07.080>

Malkin, R.A. (2007). Barriers for medical devices for the developing world. *Expert Review of Medical Devices*, 4(6), 759–763. <https://doi.org/10.1586/17434440.4.6.759>

METKA Power West Africa / Nigeria Rural Electrification Agency. (2019). Bayero University Kano Hybrid Power Project. Energizing Education Programme factsheet.

National Fire Protection Association. (2024). NFPA 99: Health Care Facilities Code. Quincy, MA: NFPA.

National Fire Protection Association. (2022). NFPA 110: Standard for Emergency and Standby Power Systems. Quincy, MA: NFPA.

Nematchoua, M.K., Ricciardi, P., & Buratti, C. (2017). Statistical analysis of indoor parameters and subjective responses of building occupants in a hot region of Indian ocean: A case of Madagascar island. *Applied Energy*, 208, 1562–1575. <https://doi.org/10.1016/j.apenergy.2017.08.207>

NHS England. (2021). Health Technical Memorandum 03-01: Specialised ventilation for healthcare premises. Part A: The concept, design, specification, installation and acceptance testing. <https://www.england.nhs.uk/publication/specialised-ventilation-for-healthcare-buildings/>

Perry, L., & Malkin, R. (2011). Effectiveness of medical equipment donations to improve health systems: How much medical equipment is broken in the developing world? *Medical & Biological Engineering & Computing*, 49, 719–722. <https://doi.org/10.1007/s11517-011-0786-3>

Poudel, B., Timilsina, A., Karki, S., Bhattarai, B., & Ghimire, B. (2025). Priority load management for improving supply reliability of critical loads in healthcare facilities under highly unreliable grids. *Energies*, 18(6), 1343. <https://doi.org/10.3390/en18061343>

Rahman, M.M., Rasul, M.G., & Khan, M.M.K. (2010). Energy conservation measures in an institutional building in sub-tropical climate in Australia. *Applied Energy*, 87(10), 2994–3004.

Salas O'Brien. (2023, August 16). Salas O'Brien celebrates grand opening of Kaiser Permanente's San Marcos Medical Center [Press release]. Business Wire. <https://www.businesswire.com/news/home/20230816880268/en/>

Sattayakorn, S., Ichinose, M., & Sasaki, R. (2017). Clarifying thermal comfort of healthcare occupants in tropical region: A case of indoor environment in Thai hospitals. *Energy and Buildings*, 149, 45–57. <https://doi.org/10.1016/j.enbuild.2017.05.025>

Sustainable Energy for All. (2022). Powering healthcare: Electrification of health facilities. <https://www.seforall.org/system/files/2022-03/phc-impact-factsheet-007.pdf>

Twerefou, D.K., & Abeney, J.O. (2020). Efficiency of household electricity consumption in Ghana. *Energy Policy*, 144, 111661. <https://doi.org/10.1016/j.enpol.2020.111661>

World Health Organization. (2010). Medical devices: Managing the mismatch. Background paper for the First WHO Global Forum on Medical Devices. Geneva: WHO.

World Health Organization. (2023). Electricity in health-care facilities: Fact sheet. <https://www.who.int/news-room/fact-sheets/detail/electricity-in-health-care-facilities>

World Health Organization. (2023). Database on electrification of health-care facilities. <https://www.who.int/data/gho/data/themes/database-on-electrification-of-health-care-facilities>

World Health Organization. (2009). Natural ventilation for infection control in health-care settings. Geneva: WHO. <https://www.who.int/publications/i/item/9789241547857>

Yau, Y.H., & Chew, B.T. (2009). Thermal comfort study of hospital workers in Malaysia. *Indoor Air*, 19(6), 500–510. <https://doi.org/10.1111/j.1600-0668.2009.00617.x>

Prepared for technical review.

© 2026 North Star Group, Inc.